Reply
Honored Contributor
Posts: 13,510
Registered: ‎05-23-2010

Vitamin B12 Deficiency. Part 2.

[ Edited ]

From the NIH. PART 2 answers questions about interactions with medications and much more.

Vitamin B12 deficiency symptoms is characterized by megaloblastic anemia, fatigue, weakness, constipation, loss of appetite, and weight loss [1,3,30]. Neurological changes, such as numbness and tingling in the hands and feet, can also occur [5,31]. Additional symptoms of vitamin B12 deficiency include difficulty maintaining balance, depression, confusion, dementia, poor memory, and soreness of the mouth or tongue [32]. The neurological symptoms of vitamin B12 deficiency can occur without anemia, so early diagnosis and intervention is important to avoid irreversible damage [6]. During infancy, signs of a vitamin B12 deficiency include failure to thrive, movement disorders, developmental delays, and megaloblastic anemia [33]. Many of these symptoms are general and can result from a variety of medical conditions other than vitamin B12 deficiency.

Typically, vitamin B12 deficiency is treated with vitamin B12 injections, since this method bypasses potential barriers to absorption. However, high doses of oral vitamin B12 may also be effective. The authors of a review of randomized controlled trials comparing oral with intramuscular vitamin B12 concluded that 2,000 mcg of oral vitamin B12 daily, followed by a decreased daily dose of 1,000 mcg and then 1,000 mcg weekly and finally, monthly might be as effective as intramuscular administration [27,28]. Overall, an individual patient’s ability to absorb vitamin B12 is the most important factor in determining whether vitamin B12 should be administered orally or via injection [8]. In most countries, the practice of using intramuscular vitamin B12 to treat vitamin B12 deficiency has remained unchanged [27].

Folic acid and vitamin B12

Large amounts of folic acid can mask the damaging effects of vitamin B12 deficiency by correcting the megaloblastic anemia caused by vitamin B12 deficiency [3,5] without correcting the neurological damage that also occurs [1,34]. Moreover, preliminary evidence suggests that high serum folate levels might not only mask vitamin B12 deficiency, but could also exacerbate the anemia and worsen the cognitive symptoms associated with vitamin B12 deficiency [6,11]. Permanent nerve damage can occur if vitamin B12 deficiency is not treated. For these reasons, folic acid intake from fortified food and supplements should not exceed 1,000 mcg daily in healthy adults [5].

Groups at Risk of Vitamin B12 Deficiency

The main causes of vitamin B12 deficiency include vitamin B12 malabsorption from food, pernicious anemia, postsurgical malabsorption, and dietary deficiency [12]. However, in many cases, the cause of vitamin B12 deficiency is unknown. The following groups are among those most likely to be vitamin B12 deficient.

Older adults

Atrophic gastritis, a condition affecting 10%–30% of older adults, decreases secretion of hydrochloric acid in the stomach, resulting in decreased absorption of vitamin B12 [5,11,35-39]. Decreased hydrochloric acid levels might also increase the growth of normal intestinal bacteria that use vitamin B12, further reducing the amount of vitamin B12 available to the body [40].

Individuals with atrophic gastritis are unable to absorb the vitamin B12 that is naturally present in food. Most, however, can absorb the synthetic vitamin B12 added to fortified foods and dietary supplements. As a result, the IOM recommends that adults older than 50 years obtain most of their vitamin B12 from vitamin supplements or fortified foods [5]. However, some elderly patients with atrophic gastritis require doses much higher than the RDA to avoid subclinical deficiency [41].

Individuals with pernicious anemia

Pernicious anemia, a condition that affects 1%–2% of older adults [11], is characterized by a lack of intrinsic factor. Individuals with pernicious anemia cannot properly absorb vitamin B12 in the gastrointestinal tract [3,5,9,10]. Pernicious anemia is usually treated with intramuscular vitamin B12. However, approximately 1% of oral vitamin B12 can be absorbed passively in the absence of intrinsic factor [11], suggesting that high oral doses of vitamin B12 might also be an effective treatment.

Individuals with gastrointestinal disorders

Individuals with stomach and small intestine disorders, such as celiac disease and Crohn’s disease, may be unable to absorb enough vitamin B12 from food to maintain healthy body stores [12,26]. Subtly reduced cognitive function resulting from early vitamin B12 deficiency might be the only initial symptom of these intestinal disorders, followed by megaloblastic anemia and dementia.

Individuals who have had gastrointestinal surgery

Surgical procedures in the gastrointestinal tract, such as weight loss surgery or surgery to remove all or part of the stomach, often result in a loss of cells that secrete hydrochloric acid and intrinsic factor [5,42,43]. This reduces the amount of vitamin B12, particularly food-bound vitamin B12 [44], that the body releases and absorbs. Surgical removal of the distal ileum also can result in the inability to absorb vitamin B12. Individuals undergoing these surgical procedures should be monitored preoperatively and postoperatively for several nutrient deficiencies, including vitamin B12 deficiency [45].

Vegetarians

Strict vegetarians and vegans are at greater risk than lacto-ovo vegetarians and nonvegetarians of developing vitamin B12 deficiency because natural food sources of vitamin B12 are limited to animal foods [5]. Fortified breakfast cereals and fortified nutritional yeasts are some of the only sources of vitamin B12 from plants and can be used as dietary sources of vitamin B12 for strict vegetarians and vegans. Fortified foods vary in formulation, so it is important to read the Nutrition Facts labels on food products to determine the types and amounts of added nutrients they contain.

Pregnant and lactating women who follow strict vegetarian diets and their infants

Vitamin B12 crosses the placenta during pregnancy and is present in breast milk. Exclusively breastfed infants of women who consume no animal products may have very limited reserves of vitamin B12 and can develop vitamin B12 deficiency within months of birth [5,46]. Undetected and untreated vitamin B12 deficiency in infants can result in severe and permanent neurological damage.

The American Dietetic Association recommends supplemental vitamin B12 for vegans and lacto-ovo vegetarians during both pregnancy and lactation to ensure that enough vitamin B12 is transferred to the fetus and infant [47]. Pregnant and lactating women who follow strict vegetarian or vegan diets should consult with a pediatrician regarding vitamin B12 supplements for their infants and children [5].

Vitamin B12 and Health Cardiovascular disease

Cardiovascular disease is the most common cause of death in industrialized countries, such as the United States, and is on the rise in developing countries. Risk factors for cardiovascular disease include elevated low-density lipoprotein (LDL) levels, high blood pressure, low high-density lipoprotein (HDL) levels, obesity, and diabetes [48].

Elevated homocysteine levels have also been identified as an independent risk factor for cardiovascular disease [49-51]. Homocysteine is a sulfur-containing amino acid derived from methionine that is normally present in blood. Elevated homocysteine levels are thought to promote thrombogenesis, impair endothelial vasomotor function, promote lipid peroxidation, and induce vascular smooth muscle proliferation [49,50,52]. Evidence from retrospective, cross-sectional, and prospective studies links elevated homocysteine levels with coronary heart disease and stroke [49,52-61].

Vitamin B12, folate, and vitamin B6 are involved in homocysteine metabolism. In the presence of insufficient vitamin B12, homocysteine levels can rise due to inadequate function of methionine synthase [6]. Results from several randomized controlled trials indicate that combinations of vitamin B12 and folic acid supplements with or without vitamin B6 decrease homocysteine levels in people with vascular disease or diabetes and in young adult women [62-70]. In another study, older men and women who took a multivitamin/multimineral supplement for 8 weeks experienced a significant decrease in homocysteine levels [71].

Evidence supports a role for folic acid and vitamin B12 supplements in lowering homocysteine levels, but results from several large prospective studies have not shown that these supplements decrease the risk of cardiovascular disease [51,65-70]. In the Women’s Antioxidant and Folic Acid Cardiovascular Study, women at high risk of cardiovascular disease who took daily supplements containing 1 mg vitamin B12, 2.5 mg folic acid, and 50 mg vitamin B6 for 7.3 years did not have a reduced risk of major cardiovascular events, despite lowered homocysteine levels [68]. The Heart Outcomes Prevention Evaluation (HOPE) 2 trial, which included 5,522 patients older than 54 years with vascular disease or diabetes, found that daily treatment with 2.5 mg folic acid, 50 mg vitamin B6, and 1 mg vitamin B12 for an average of 5 years reduced homocysteine levels and the risk of stroke but did not reduce the risk of major cardiovascular events [66]. In the Western Norway B Vitamin Intervention Trial, which included 3,096 patients undergoing coronary angiography, daily supplements of 0.4 mg vitamin B12 and 0.8 mg folic acid with or without 40 mg vitamin B6 for 1 year reduced homocysteine levels by 30% but did not affect total mortality or the risk of major cardiovascular events during 38 months of follow-up [69]. The Norwegian Vitamin (NORVIT) trial [65] and the Vitamin Intervention for Stroke Prevention trial had similar results [70].

The American Heart Association has concluded that the available evidence is inadequate to support a role for B vitamins in reducing cardiovascular risk [51].

Dementia and cognitive function

Researchers have long been interested in the potential connection between vitamin B12 deficiency and dementia [50,72]. A deficiency in vitamin B12 causes an accumulation of homocysteine in the blood [6] and might decrease levels of substances needed to metabolize neurotransmitters [73]. Observational studies show positive associations between elevated homocysteine levels and the incidence of both Alzheimer’s disease and dementia [6,50,74]. Low vitamin B12 status has also been positively associated with cognitive decline [75].

Despite evidence that vitamin B12 lowers homocysteine levels and correlations between low vitamin B12 levels and cognitive decline, research has not shown that vitamin B12 has an independent effect on cognition [76-80]. In one randomized, double-blind, placebo-controlled trial, 195 subjects aged 70 years or older with no or moderate cognitive impairment received 1,000 mcg vitamin B12, 1,000 mcg vitamin B12 plus 400 mcg folic acid, or placebo for 24 weeks [76]. Treatment with vitamin B12 plus folic acid reduced homocysteine concentrations by 36%, but neither vitamin B12 treatment nor vitamin B12 plus folic acid treatment improved cognitive function.

Women at high risk of cardiovascular disease who participated in the Women’s Antioxidant and Folic Acid Cardiovascular Study were randomly assigned to receive daily supplements containing 1 mg vitamin B12, 2.5 mg folic acid and 50 mg vitamin B6, or placebo [79]. After a mean of 1.2 years, B-vitamin supplementation did not affect mean cognitive change from baseline compared with placebo. However, in a subset of women with low baseline dietary intake of B vitamins, supplementation significantly slowed the rate of cognitive decline. In a trial conducted by the Alzheimer’s Disease Cooperative Study consortium that included individuals with mild-to-moderate Alzheimer’s disease, daily supplements of 1 mg vitamin B12, 5 mg folic acid, and 25 mg vitamin B6 for 18 months did not slow cognitive decline compared with placebo [80]. Another study found similar results in 142 individuals at risk of dementia who received supplements of 2 mg folic acid and 1 mg vitamin B12 for 12 weeks [78].

The authors of two Cochrane reviews and a systematic review of randomized trials of the effects of B vitamins on cognitive function concluded that insufficient evidence is available to show whether vitamin B12 alone or in combination with vitamin B6 or folic acid has an effect on cognitive function or dementia [81-83]. Additional large clinical trials of vitamin B12 supplementation are needed to assess whether vitamin B12 has a direct effect on cognitive function and dementia [6].

Energy and endurance

Due to its role in energy metabolism, vitamin B12 is frequently promoted as an energy enhancer and an athletic performance and endurance booster. These claims are based on the fact that correcting the megaloblastic anemia caused by vitamin B12 deficiency should improve the associated symptoms of fatigue and weakness. However, vitamin B12 supplementation appears to have no beneficial effect on performance in the absence of a nutritional deficit [84].

Health Risks from Excessive Vitamin B12

The IOM did not establish a UL for vitamin B12 because of its low potential for toxicity. In Dietary Reference Intakes: Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline, the IOM states that “no adverse effects have been associated with excess vitamin B12 intake from food and supplements in healthy individuals” [5].

Findings from intervention trials support these conclusions. In the NORVIT and HOPE 2 trials, vitamin B12 supplementation (in combination with folic acid and vitamin B6) did not cause any serious adverse events when administered at doses of 0.4 mg for 40 months (NORVIT trial) and 1.0 mg for 5 years (HOPE 2 trial) [65,66].

Interactions with Medications

Vitamin B12 has the potential to interact with certain medications. In addition, several types of medications might adversely affect vitamin B12 levels. A few examples are provided below. Individuals taking these and other medications on a regular basis should discuss their vitamin B12 status with their healthcare providers.

Chloramphenicol

Chloramphenicol (Chloromycetin®) is a bacteriostatic antibiotic. Limited evidence from case reports indicates that chloramphenicol can interfere with the red blood cell response to supplemental vitamin B12 in some patients [85].

Proton pump inhibitors

Proton pump inhibitors, such as omeprazole (Prilosec®) and lansoprazole (Prevacid®), are used to treat gastroesophageal reflux disease and peptic ulcer disease. These drugs can interfere with vitamin B12 absorption from food by slowing the release of gastric acid into the stomach [86-88]. However, the evidence is conflicting on whether proton pump inhibitor use affects vitamin B12 status [89-92]. As a precaution, healthcare providers should monitor vitamin B12 status in patients taking proton pump inhibitors for prolonged periods [85].

H2 receptor antagonists

Histamine H2 receptor antagonists, used to treat peptic ulcer disease, include cimetidine (Tagamet®), famotidine (Pepcid®), and ranitidine (Zantac®). These medications can interfere with the absorption of vitamin B12 from food by slowing the release of hydrochloric acid into the stomach. Although H2 receptor antagonists have the potential to cause vitamin B12 deficiency [93], no evidence indicates that they promote vitamin B12 deficiency, even after long-term use [92]. Clinically significant effects may be more likely in patients with inadequate vitamin B12 stores, especially those using H2 receptor antagonists continuously for more than 2 years [93].

Metformin

Metformin, a hypoglycemic agent used to treat diabetes, might reduce the absorption of vitamin B12 [94-96], possibly through alterations in intestinal mobility, increased bacterial overgrowth, or alterations in the calcium-dependent uptake by ileal cells of the vitamin B12-intrinsic factor complex [95,96]. Small studies and case reports suggest that 10%–30% of patients who take metformin have reduced vitamin B12 absorption [95,96]. In a randomized, placebo controlled trial in patients with type 2 diabetes, metformin treatment for 4.3 years significantly decreased vitamin B12 levels by 19% and raised the risk of vitamin B12 deficiency by 7.2% compared with placebo [97]. Some studies suggest that supplemental calcium might help improve the vitamin B12 malabsorption caused by metformin [95,96], but not all researchers agree [98].

Vitamin B12 and Healthful Diets

The federal government’s 2015-2020 Dietary Guidelines for Americans notes that “Nutritional needs should be met primarily from foods. … Foods in nutrient-dense forms contain essential vitamins and minerals and also dietary fiber and other naturally occurring substances that may have positive health effects. In some cases, fortified foods and dietary supplements may be useful in providing one or more nutrients that otherwise may be consumed in less-than-recommended amounts.”

For more information about building a healthy diet, refer to the Dietary Guidelines for Americansexternal link disclaimer and the U.S. Department of Agriculture’s MyPlateexternal link disclaimer.